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ABSTRACT: Protein side-chain motions are involved in
many important biological processes including enzymatic
catalysis, allosteric regulation, and the mediation of
protein−protein, protein−DNA, protein−RNA, and pro-
tein−cofactor interactions. NMR spectroscopy has long
been used to provide insights into the motions of side-
chain groups. Currently, the method of choice for studying
side-chain dynamics by NMR is the measurement of
methyl 2H autorelaxation. Methyl 2H autorelaxation
exhibits simple relaxation mechanisms and can be
straightforwardly converted to meaningful dynamic
parameters. However, methyl groups can only be found
in 6 of 19 side-chain bearing amino acids. Consequently,
only a sparse assessment of protein side-chain dynamics is
possible. Therefore, there is a significant interest in
developing novel methods of studying side-chain motions
that can be applied to all types of side-chains. Here, we
show how side-chain chemical shifts can be used to
determine the magnitude of fast side-chain motions in
proteins. The chemical shift method is applicable to all
side-chain bearing residues and does not require any
additional measurements beyond standard NMR experi-
ments for backbone and side-chain assignments.

Side-chain dynamics play a crucial role in many aspects of
protein function including enzymatic catalysis, allosteric

regulation, and the mediation of protein−ligand interactions.1

NMR spectroscopy provides structural biologists with a unique
set of tools to assess the amplitudes and time-scales of side-
chain motions at the atomic level. NMR studies of protein side-
chain dynamics commonly include measurements of auto- or
cross-correlated relaxation rates for various atoms found along
the length of amino acid side-chains, such as methyl, methylene,
methine, and aromatic groups (reviewed by Igumenova et al.).2

These relaxation rates can be subsequently analyzed using
model-independent methods (e.g., Lipari−Szabo model-free
approach)3 and/or model-dependent methods (e.g., Woess-
ner’s random jumps and stochastic diffusion models,4 the
wobbling-in-a-cone model,5,6 and Gaussian axial fluctuation and
jump model7) to extract the amplitude and time-scale of side-
chain motions. While these experimental strategies have solid
theoretical foundations and have provided many important
insights into the role of side-chain motions in protein function,
they also have their share of limitations and disadvantages.
More specifically, as the protein size increases, the evaluation of
methylene and methine groups quickly becomes very

challenging due to increasing spectral overlap and/or
diminishing signal intensity. The dynamic interpretation of
side-chain atom 13C relaxation is complicated by the presence
of multiple relaxation mechanisms. Complex NMR experiments
and expensive isotope labeling schemes are often required to
suppress multiple 13C relaxation pathways. Hence, the vast
majority of NMR studies on side-chain dynamics are currently
conducted using deuterated methyl groups via 2H autorelax-
ation experiments. Methyl group 2H autorelaxation is
characterized by simple relaxation mechanisms, offers good
spectral sensitivity, and can be straightforwardly converted to
meaningful dynamic parameters. However, methyl groups can
be found only in 6 of the 19 side-chain bearing amino acids,
meaning only a sparse assessment of protein side-chain
dynamics is possible. In addition, the NMR-measured dynamics
of methyl groups is mostly affected by rotameric jumps8 and
thus may not always represent the collective motions of the
whole side-chain. Finally, the time-scale of fast side-chain
motions (ps−ns time-scale) that are amenable to study by
NMR relaxation is limited by the protein’s overall tumbling
rate.3 Given the aforementioned shortcomings, there is a
significant need in the NMR community to develop novel ways
of studying fast side-chain dynamics without the limitations of
the existing relaxation methods.
Here, we present a simple method for extracting amplitudes

of side-chain motions from NMR chemical shifts. The method
is applicable to all 19 side-chain bearing amino acids, reports
the mobility of the whole side-chain, and does not need any
additional measurements beyond the standard NMR experi-
ments for backbone and side-chain assignments. Further, we
show that this new method provides a good experimental
estimate of residue-specific accessible surface area and can be
used to quantitatively predict B-factors of X-ray protein models
and per residue root-mean-square deviations (RMSD) of side-
chain atoms that are observed in MD simulations and NMR
structural ensembles.
Previously we demonstrated that the amplitude of protein

backbone motions could be determined using backbone
chemical shifts via the random coil index (RCI).9−11 Because
of the RCI’s widespread use in the biomolecular NMR
community, we were encouraged to develop a similar approach
to characterize side-chain dynamics. However, a simple
extension of the existing RCI protocol to side-chain atoms
does not produce a satisfactory assessment of side-chain
motional amplitudes, as shown in Figure S1. In order to achieve
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more accurate predictions, we had to fundamentally rethink
how to define side-chain motions and how to use chemical
shifts to assess their amplitudes.
In this work, we hypothesized that side-chain and backbone

chemical shifts are related to a combination of all motional
events that contribute to changes in the chemical environment
of side-chain atoms. Such motions include interconversions
among side-chain rotamers, fluctuations of backbone torsion
angles (local and nearest neighbors), and large-amplitude
segmental motions in protein loops and termini. We define the
side-chain reorientations due to these combined motional
events as total side-chain motions. Comparison of backbone
RMSD (RMSDBB) and side-chain RMSD (RMSDSC) for total
side-chain motions from MD simulations (Figure 1A) indicated
that total side-chain motions can have differing dominant
mechanisms in different protein regions.

For example, amplitudes of total side-chain motions in rigid
parts (α-helix, β-sheet) of a protein will likely be dominated by
transitions among side-chain rotamers (Mechanism I, RMSDSC
≫ RMSDBB, Figure 1A), whereas side-chain displacements in
very flexible loops and the termini will be primarily driven by
backbone motions (Mechanism III, RMSDSC ≈ RMSDBB,
Figure 1A). Between these two extremes, multiple dynamic
processes may have comparable contributions to total side-
chain fluctuations (Mechanism II, Figure 1A). The dominant
mechanism(s) of total side-chain motions will also depend on
the residue type. While total mobility of residues with long side-
chains (e.g., Arg, Lys, Leu, Ile, Met) will be greatly affected by
transitions among side-chain group rotamers, total mobility of
short (e.g., Ala, Ser) and rigid (Pro) side-chains will be
significantly influenced by backbone motions. Regardless of the
different dominant dynamic mechanisms, the principle out-
comes in all scenarios are the same: side-chain reorientations
change the chemical environment of side-chain atoms.

To calculate the amplitudes of total side-chain motions from
experimental chemical shifts, we developed a new RCI
specifically for side-chains (RCISC) that combines side-chain
and backbone shifts as follows:

∑ δ= *⟨ |Δ | ⟩ + *−A k BRCI ( ) RCI
a

aSC
1

BB
(1)

where a indicates side-chain atoms of a given residue, |Δδa| is
absolute secondary chemical shift of side-chain atom a (i.e.,
experimental shift minus the corresponding random coil value),
k, A, and B are weighting coefficients, and RCIBB is the RCI of
the backbone chemical shifts.9 Random coil values measured by
Wishart et al.12 were used in this work. 13C, 15N, and 1H
secondary chemical shifts were scaled by 2.5, 1, and 10,
respectively, to account for the characteristic resonance
frequencies of these nuclei. The minimal value for the scaled
|Δδa| was set to 0.5 to avoid infinitely large RCISC values when
secondary chemical shifts approach zero. For predicting
accessible surface area (vide inf ra), the minimal value |Δδa|
had to be increased to 1.5. The most recent weighting
coefficients10 and the standard procedure11 for calculating the
backbone RCIBB were used.
We optimized the weighting coefficients in the RCISC

expression to predict the amplitudes of side-chain motions
(i.e., RMSDSC) observed in MD simulations. To perform the
optimization, we built training and testing sets, each containing
15 proteins with complete or near complete NMR assignments
(Tables 1 and S1). The data sets consisted of 2858 residues,

spanning a range of protein sizes from 32 to 149 residues and
included various protein fold classes (all α, all β, mixed α/β)
with both ordered and disordered regions.
To obtain the amplitudes of the total side-chain motions, we

calculated MD trajectories for each protein using Gromacs
4.5.5.13 The MD simulations were done in explicit solvent with
the GROMOS96 43a1 force field14 and had an average length
of 3 ns. The RMSDSC was calculated for each MD trajectory
using the Gromacs program. Details of the MD simulations and

Figure 1. Mechanisms of total side-chain motions identified by MD
(A) and side-chain RCI (B) for PyJ (PDB ID: 1FAF). Mechanisms are
labeled with Roman numerals. Mechanism I corresponds to the
dominant contribution of side-chain rotameric jumps to side-chain
displacements. Mechanism II indicates comparable contributions of
side-chain and backbone flexibilities to side-chain total motions.
Mechanism III corresponds to the dominant contribution of backbone
motions to the amplitude of side-chain movements. Ellipses indicate
protein regions corresponding to particular mechanisms of total side-
chain motions. Additional details about the simulations are in the SI.

Table 1. Spearman Coefficient of RCISC Correlation with Per
Residue RMSDSC of MD and NMR Ensembles and
Fractional ASA for the Testing Set

protein
BMRB
ID PDB ID

MD
RMSD

NMR
RMSD ASA

At1g70830 7339 2I9Y 0.75 0.67 0.72
sperm flagellar
protein 1

10147 2EE7 0.77 0.74 0.71

engrailed homeo-
domain

7401 2P6J 0.89 0.87 0.77

F20O9.120 10090 1WJJ 0.81 0.79 0.79
HopPmaL 17739 2LF6 0.82 0.78 0.78
LIM domain 11350 1X4L 0.73 0.82 0.75
MM1357 6505 1YEZ 0.83 0.81 0.81
replication protein A 15849 2K5V 0.74 0.76 0.71
atrophin-1 interacting
protein

10064 1UEW 0.78 0.84 0.73

hepatoma growth
factor

10123 1N27 0.86 0.86 0.78

Alr3790 16382 2KL3 0.82 0.75 0.75
SpaI 17534 2LVL 0.85 0.75 0.72
ubiquitin 17769 1D3Z 0.77 0.64 0.71
STAM2 10264 1X5B 0.74 0.74 0.74
yxeF 15211 2JOZ 0.88 0.75 0.8
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RMSD calculations are available in the Supporting Information
(SI).
The weighting coefficients (k, A, and B) in the RCISC

expression were optimized by a grid search to maximize the
Spearman rank-order correlation coefficient15 between RCISC
and the side-chain RMSD. Coefficients k were optimized
separately for each residue type, whereas coefficients A and B
were tuned globally for the whole training set. The average
Spearman correlation coefficient for the training set was 0.81.
The performance of RCISC for individual proteins in the
training set is shown in Table S1. The optimized weighting
coefficients can be found in Table S6. A leave-one-out cross-
validation protocol was applied to the calculation of the RCISC
coefficients to ensure that they were not overfitted. More
specifically, weighting coefficients for each protein were
optimized without its own data. The average rank-order
correlation coefficient between the RCISC and RMSDSC from
MD simulations in the leave-one-out test was 0.81 (identical to
that obtained with the training set).
In addition, the RCISC method was validated on a testing set

of 15 proteins, which were not included in the grid search
(Tables 1 and S2). The average rank-order coefficient of
correlation between RCISC and RMSDSC of these proteins was
0.80. The mean Pearson correlation coefficients16 were 0.86
and 0.82 for the training and testing sets, respectively. Examples
of per-residue correlations between RCISC and RMSDSC are
shown in Figures 2A and S3.
It is important to note that the MD force-field and MD

simulation period used to train RCISC were chosen to match
the MD parameters that had been used in optimizing the
original RCIBB.

9 However, testing RCISC on subsets of its
training/testing data indicated that RCISC still correlates very
well with MD RMSDSC obtained with other force fields or with
longer MD simulations (Tables S3 and S4).
We tested the generality of the RCISC estimates by

calculating the correlation between RCISC and the magnitude
of the side-chain total deviations that are observed in NMR
ensembles (i.e., side-chain RMSD). Side-chain NMR RMSDs
are influenced by protein dynamics and by the presence and
strength of experimental restraints (e.g., NOEs). RMSDSC
values in NMR ensembles were measured by MolMol17 after
aligning the ensembles by their secondary structure elements.
Average Spearman coefficients of correlation between the
RCISC and NMR RMSDSC are 0.77 for both the training and
testing sets (Tables 1 and S1). Average Pearson correlation
coefficients are 0.81 and 0.80 for the training and testing sets,
respectively (Tables S1 and S2). Examples of the per-residue
agreement between RCISC and NMR RMSDSC are shown in
Figures 1B and S4.
In addition, we validated the RCISC method by testing its

ability to predict thermal B-factors (B) of side-chains in X-ray
protein models. B-factors are related to mean-square displace-
ments <x2> of side-chain atoms via a well-known relationship:18

B = 8π2<x2>. For a set of 18 X-ray structures, RCISC showed a
good correlation to mean side-chain B-factors, with a Spearman
correlation coefficient of 0.72 and a Pearson correlation
coefficient of 0.74 (Table S5, Figures 2C and S5).
We also investigated the relationship between RCISC and the

fractional accessible surface area (ASAf) of protein residues.
When inspecting side-chains of PyJ (PDB ID: 1FAF), we
noticed that side-chains with low RCISC values (<0.11) were
mostly buried, whereas residues with high RCISC (>0.15) values
were solvent exposed (Figure S6). Calculations of coefficients

of RCISC correlation with ASAf (as reported by MolMol)
confirmed that RCISC agrees with ASAf reasonably well, with
mean Spearman coefficients of 0.76 and 0.75, and Pearson
coefficients of 0.72 and 0.73 for the training and testing tests,
respectively (Tables 1, S1, and S2). Examples of ASAf
predictions can be seen in Figures 1D and S7.
Not surprisingly, our preliminary tests did not find a good

correlation between RCISC and experimental CH3 order
parameters (data not shown). CH3 order parameters are
known to have a poor correlation with ASA2,19−23 and primarily
depend on transitions among side-chain rotamers.8 Since the
side-chain rotamer transitions and total side-chain motions
(which RCISC was trained to predict) can correspond to
different motional events, a disagreement of RCISC with CH3
order parameters should not be unexpected. RCI optimization
to predict CH3 order parameters is beyond the scope of this
paper and will be attempted in follow-up studies.
Using our training set, we obtained the following scaling

relationships to quantitatively estimate side-chain RMSDs,
ASAf, and B-factors from RCISC values:

= *MD RMSD RCI 9.0ÅSC SC (2)

= *NMR RMSD RCI 6.0ÅSC SC (3)

Figure 2. Correlation of the RCISC with side-chain MD RMSD (A),
side-chain NMR RMSD (B), normalized mean side-chain B-factor
(C), and fractional ASA (D). The backbone RCI (green lines) is also
included to demonstrate that it alone cannot properly predict side-
chain mobility and ASAf.
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= *ASAf RCI 1.5SC (4)

= * +B RCI 1.0Å 1.0SC SC
2

(5)

where BSC is the average side-chain B-factor normalized by the
smallest observed B-factor value (BMIN), using equation BSC =
(B − BMIN)/100 + 1. Average median scores of absolute
prediction errors for MD RMSDSC, NMR RMSDSC, and ASAf
were, 0.40 Å, 0.37 Å, and 0.09, respectively, for the training set
and 0.46 Å, 0.40 Å, and 0.09, respectively, for the testing set.
The average median score for predicting the normalized B-
factor was 0.07 Å2. Prediction errors for individual types of
residues are shown in Tables S7−S9 and can be displayed by
the RCISC program (vide inf ra) to indicate prediction
uncertainty.
It is important to note that the side-chain RCI method allows

one to identify the dominant mechanism of side-chain
displacements. This is demonstrated for the PyJ protein
(Figure 1B). A comparison of the RCISC with its backbone
RCIBB component can indicate what motional events
contribute most into side-chain movements. When the RCISC
is significantly bigger than the RCIBB (Mechanism I, Figure
1B), it is reasonable to conclude that side-chain motions
primarily depend on jumps among the side-chain rotamers.
When the RCIBB is comparable to the RCISC (Mechanism III,
Figure 1B), backbone motions play the dominant role in side-
chain displacements. For the remaining cases, one should
expect comparable contributions of side-chain rotameric jumps
and backbone flexibility to the amplitude of the total side-chain
motions (Mechanism II, Figure 1B).
In summary, we have developed a new chemical shift-based

method, called side-chain RCI, for predicting the amplitudes of
total side-chain motions in proteins. Furthermore, we have
demonstrated that this method can be used to obtain
quantitative estimates of residue-specific side-chain RMSDs of
MD and NMR ensembles as well as residue-specific ASAf and
X-ray B-factors for a wide variety of proteins. Comparison of
the side-chain and backbone RCI can also provide insights
about the mechanism(s) of side-chain displacements, while the
ASAf predicted from RCISC should be useful for evaluating
quality of protein models. The side-chain RCI approach has a
number of advantages over many commonly used NMR
relaxation methods. In particular, it reports the collective
mobility of the complete side-chain (not just a specific side-
chain group) for all 19 side-chain bearing amino acids. Side-
chain RCI does not require any additional NMR measurements
or the preparation of additional selectively labeled NMR
samples beyond the NMR experiments and samples typically
used for standard backbone and side-chain assignments.
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